# Diamond Light Source



Diamond Controls



## Foundations – Sept 2003





## Roof Cladding – May 2004





### October 2004





### The Experimental Hall – October 2004



## May 2006





## The Experimental Hall – May 2006



#### Control System Architecture

- Based on EPICS using Two Layer Model
  - Primary interface to CS through VME IOCs
  - Use VME64x, IP carriers, IP Modules and transition board for rear connection
  - Hot Swap capability
- Will use PLCs to manage interlocks for protection
  - Avoids Watch Dogs on IOCs and allow warm reboot of IOCs
  - Omron CJ PLCs for low end applications, eg Vac Valve control
  - Siemens S7/300 and S7/400 for high end applications, eg Linac and Cryoplant
- Serial Interface to Instrumentation
  - Potentially several thousand
  - Serial support through Stream Device and ORNL Serial



#### Hardware

- Development
  - Linux for Development
  - Running EPICS R3.13.9 on the machine and R3.14.7 on beamlines, but ultimately moving to R3.14.8.2
  - Using Tornado 2.2
- Consoles
  - PCs running Linux RH 9.0
  - Will support Win2000/XP
- IOCs
  - VME64x
  - PPC604 Processor boards, evaluating MVME5500
  - Will use IP carrier and modules
  - Primarily 7 slot crates
  - Currently 257 IOCs with 450000PVs (Machine Only)





#### Linac



- 'Turn-key' contract for 100 MeV Linac with Accel Gmb
  - Includes installation and commissioning to a performance spec.
- EPICS Controls included in contract
  - Uses Siemens S7 300 and S7 400 PLCs for control and protection of modulators and electron source
  - Interfaced to IOC using Network connection



### Linac Commissioning



First beam from gun: 31st August 2005

First 100MeV beam 7<sup>th</sup> September 2005



#### **Booster**



- Lattice
  - 22 Cell FODO with missing dipoles
- Magnets
  - 36 Dipoles, 44 Quads,22 Sexts, 44 Steerer
- Diagnostics
  - 22 eBPM Libera
- RF
  - NC RF 5 Cell DESY cavity
- Vacuum
  - 7 vacuum valves, 54lon pumps, 16 gauges



#### **Booster Commissioning**





- First injection into booster from LTB
- Acceleration to 700 MeV
- First extraction from booster at 700 MeV
- First 700 MeV injection into storage ring
- Limited to 700 MeV because of cooling water troubles

Dec 22<sup>nd</sup> 2005 March 3rd 2006 April 4th 2006 May 2006

**diamond** 

### Storage Ring



- Lattice
  - 561.6 m Circumference
  - 24 Cell DBA
  - 72 Girders
- Magnets
  - 240 Quad, 168 Sext,336 Steerers, 96 Squad
- Diagnostics
  - 168 eBPMs Libera
- RF
  - 900kW
  - 3 SC Cornell Cavities
- Vacuum
  - 96 Vacuum valves,~400 Vac gauges, ~550Ion pumps



#### Storage Ring Commissioning



- Technical systems commissioned Jan to April 2006
- 1<sup>St</sup> beam,1 Turn, 5<sup>th</sup> May
- 600 turns (~1msec) 7th May
- Stored beam (~2mA) 30<sup>th</sup> May





### **EDM Video Widget**



- EDM Video Widget Extended by S Singleton.
- False Colour
- Optional Grid
- Scalable Resolution
- Maximum refresh rate calculated and imposed.
- Zoom and pan support (fixed CA comms to widget when data size changes)



### Diamond Beamlines Build System





#### Beamline XML Signal List



- XML source parsed by Python scripts
- Used to generate EDM screens and create db files



#### Beamline EDM Synoptic Screens











